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A calculation of the quantum mechanical propagator for a general time-depen- 
dent one-dimensional damped, forced harmonic oscillator based on a direct 
application of the Schwinger action principle is presented. Contact with an 
earlier general method of calculation is made and in particular two previously 
found results are recovered from our general expression. The apparent depen- 
dence of one of them upon some unphysical parameters is clarified. The method 
presented here can be applied to any system described by a quadratic Hamilto- 
nian and is an immediate extension of the calculation for the propagator of a 
simple harmonic oscillator with constant frequency. 

1. I N T R O D U C T I O N  

The problem of the calculation of the quantum mechanical propagator 
K ( q ' ,  t ' ;  q', t ') (transformation function, Green's function) for a system 
described by a general quadratic Lagrangian is solved in principle through 
the use of the Van Vleck-Pauli formula which reduces to (h = 1) 

S_~q ) 1/2 

i exp[iS(q"t" ,q ' , ' ) ]  K ( q " ,  t"; q', t') = 2vr O " (1) 

in the one-dimensional case. The problem is thus shifted to the calculation 
of the classical action S as a function of the end points q', t" and q ' ,  t"  
with S =  ftt"L(t)dt. Such calculation is not completely straightforward 
especially when the parameters of the Lagrangian depend explicitly on time. 

Recently there has been a renewal of the interest in the calculation of 
the quantum mechanical propagator for a one-dimensional harmonic oscil- 
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lator with time-dependent frequency and damping coefficient acted upon by 
an external time-dependent force (Khandekar and Lawande, 1978; Dodonov 
et al., 1979). The calculation of Khandekar and Lawande (1978), valid for a 
constant damping coefficient, is based on first finding an explicitly 
time-dependent constant of motion which is subsequently used to define a 
canonical transformation. The generating function of such canonical trans- 
formation is then found and shown to be simply related to the action S 
which is finally substituted in equation (1). The final expression for the 
propagator K has an explicit dependence upon the end point coordinates q" 
and q", while the time dependence is given implicitly through the evaluation 
of two auxiliarly functions at the initial and final times. This is a common 
feature of all those calculations where the explicit time dependence of the 
frequency and damping coefficient are not specified. One of the time-depen- 
dent auxiliary functions used by Khandekar and Lawande satisfies a 
nonlinear second-order differential equation (two constants of integration), 
while the other is obtained by integrating once with respect to time certain 
function of the first auxiliary function (one additional constant of integra- 
tion). The boundary conditions of these auxiliary functions are not specified 
by the construction of the propagator. This situation leads to the uncomfor- 
table feeling that the propagator depends on these three arbitrary constants 
of integration. At least, the explicit form for K given by Khandekar and 
Lawande allows us to verify that the final result is indeed independent of 
the arbitrary integration constant associated with the second auxiliary 
function referred to above. However, it is far from clear which is the 
situation regarding the dependence of the propogator K upon the remaining 
two arbitrary constants of integration. 

The calculation of the propagator carried by Dodonov et al. (1979) is 
valid for any damping coefficient and is based on a previously established 
connection between the integrals of the motion of a quantum system and its 
propagator (Dodonov et al., 1975). In fact, Dodonov et al. (1975) show that 
the action of the initial position and initial momentum operators upon the 
transformation function can be expressed in terms of simple operations on 
the initial coordinates of the propagator. The initial position and momen- 
tum operators, regarded here as integrals of the motion, are subsequently 
expressed as functions of the dynamical operators at the final time. In this 
way a set of partial differential equations for the Green's function in terms 
of the initial and final coordinates is obtained. Such procedure can be 
explicitly carried out for a general time-dependent quadratic Larangian in 
virtue of the linearity of the corresponding equations of motion. The 
resulting partial differential equations can be readily integrated and together 
with the Schr6dinger equation completely determine the propagator. Again, 
the final expression for K is explicit in the initial and final coordinates and 
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the time dependence is incorporated via two auxiliary functions which now 
satisfy a linear second-order differential equation. This time the boundary 
conditions for such auxiliary functions are uniquely defined by choosing the 
integrals of motion to be the initial position and momentum operators. 

It is well known that the Green's function for a general quadratic 
Lagrangian with an external time-dependent force can also be obtained by 
using Feynman path integral formulation of quantum mechanics (Feynman 
and Hibbs, 1965). Calculations along these lines for some particular cases 
have been carried by Papadopoulos (1974). 

In this work we present a calculation of the propagator for a one- 
dimensional damped-force harmonic oscillator with arbitrary time-depen- 
dent parameters which is based in an application of the Schwinger action 
principle for quantum mechanics. We recover the result of Dodonov et al. 
(1979) and show that their method is both in spirit and in application 
closely related to the calculation of the Green's function according to 
Schwinger's ideas. 

Section 2 contains a brief review of the action principle in quantum 
mechanics (Schwinger, 1951, 1970) together with the calculation of the 
propagator for the harmonic oscillator with constant frequency which will 
serve as a model for the time-dependent case. A discussion of the integrabil- 
ity conditions for the differential equations which determine the propagator 
is given in the general case. In this section we also show how the relations 
between the integrals of motion and the Green's function discovered by 
Dodonov et al. (1975) can be obtained as a direct application of the action 
principle. 

In Section 3 we extend the above-mentioned propagator calculation to 
the damped time-dependent harmonic oscillator case. The external time- 
dependent force is subsequently introduced via another application of the 
action principle and finally we recover the result of Dodonov et al. (1979). 
In this section we also make contact with the calculation of Khandekar and 
Lawande (1978). Our way of obtaining their expression for the propagator 
clearly shows that this result is indeed independent of any arbitrary integra- 
tion constant. Some details regarding the calculations in this section are 
given in the Appendix. 

Finally, Section 4 contains a brief summary and discussion of our 
work. 

2. THE ACTION PRINCIPLE IN QUANTUM MECHANICS 

The basic quantity in the quantum mechanical description of a sys- 
tem can be considered the transformation function K(a",t";b',t')= 
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Ca", t"[b', t ') which connects the representation in terms of a complete set 
of commuting operators having eigenvalues b' at time t '  with the corre- 
sponding representation in terms of another complete set of commuting 
operators having eigenvalues a "  at the later time t".  This transformation 
function can also be regarded as the matrix elements, in a mixed basis, of 
the evolution operator U(t ' , t ' )  of the system. In fact, Ca", t'lb', t ' )=  
(a"lU(t", t')lb'), so that the transformation function contains all the dy- 
namical information of the system. 

In the literature we find two formulations of quantum mechanics where 
the basic object is taken to be the above-mentioned transformation func- 
tion. One of them is Feynman path integral method (Feynman, 1948) which 
gives an expression of the transformation function in terms of the exponen- 
tial of the classical action summed over all possible trajectories between the 
initial and final points in configuration space. 

An alternative formulation is the Schwinger action principle, which we 
now briefly review. This principle is a differential characterization of the 
transformation function. It states that any conceivable infinitesimal varia- 
tion in Ca", t"lb', t') is given by the corresponding matrix elements of the 
variation of a single quantum mechanical operator 

(2) 

which is the action operator. This operator is defined as the time integral of 
the Lagrangian operator L of the system. The Lagrangian is written in first 
order form and depends on the canonical variables q~, Pi of the system in 
the following way 

( aq, aq, 
L = P'--d-f + -d-i -p') - H(q,, p~) (3) 

Here q~(t) and p~(t) are Hermitian position and momentum operators, 
respectively, and the Hamiltonian operator H contains all the dynamical 
information relevant to the system. 

The next point to be specified is the operator character of the varia- 
tions 6q~(t) and 6p~(t) that we are going to encounter when we vary the 
Lagrangian. For  the application we have in mind here it is enough to 
consider only what Schwinger calls variables of the first kind. The variations 
appropriate to such variables are just pure numbers and therefore commute 
with all other operators. 

From now on we will restrict ourselves to the one-dimensional situa- 
tion and we will work in a complete and orthonormal coordinate basis 
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defined by the eigenvectores [q', t ' )  of the position operator q(t '): 

q(t')lq', t') = q'lq', t') (4) 

Leaving aside for the moment possible changes in the dynamics of the 
system, which would be reflected in changes on the parameters of the 
Hamiltonian, we realize that the only changes that we can produce on 
the transformation function are those related to alterations in the initial and 
final descriptions of the system: q', t', q", t". The related variable changes 
8q', 6t', 6q", 8t" will induce a change in the states of the system through an 
infinitesimal unitary transformation in such a way that 

81q', t') = -iG(t')Iq', t') (5) 

The infinitesimal Hermitian operator G(t') is the generator of the corre- 
sponding unitary transformation at the time t '  and depends on the changes 
3q', 8t '  together with functions of the dynamical variables q(t'), p(t'). In 
this way we can write 

~(q" , t ' lq ' , t ' )=i (q" , t ' l (G( t ' ) -G( t ' ) ) lq ' , t ' )  (6) 

which allows us to express the action principle in operator form 

3 fti"Ldt = G( t " ) -  G(t') (7) 

after comparing equations (2) and (6). Equation (7) tells us that, for a given 
dynamics, the changes of the action operator depend only on the end points. 
The explicit calculation of the variation of the left-hand side of (7) will 
allow the identification of the generators G and the obtainment of the 
equations of motion for the dynamical variables. To this end it is convenient 
to think of the variables q, p, and t as being parametrized by an auxiliary 
variable ~- which is kept fixed at the end points. In this way 

8f t i"Ldt=Sf~"l (pdq+dqp)-Hdt  (8) 

The fact that the variations 8q and 8p are pure numbers makes this 
calculation very similar to the analogous one in classical mechanics. The 
result is 

, f ; "Ld t=(pSq-HSt ) t l "  

dH ~t) (9) + f f ' d t ( o ~ p -  p ~ q - S H  +--~- 
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which must depend only on the end points according to (7). The second 
term of the right-hand side of equation (9) clearly depends on the detailed 
history between the end points and then must be set equal to zero for 
arbitrary variations 8q(t), 8p(t), and 6t(t). This is achieved by setting 

dH 
6H = gtSp - p 6q + ~ 8t 

OH 8p + OH OH 8t (10) 
Op -~q 6q + Ot 

where we have explicitly written the change of H in the last line of (10). The 
identification of the coefficients of the independent variations in (10) leads 
to the equations of motion 

OH 
O = Op ( l la )  

OH 
P = Oq (11b) 

[I= OH 
Ot (11c) 

Furthermore, the first term of the fight-hand side of (9) provides the 
identification of the generator of the end point transformations as 

G(t)  = p ( t )  8 q ( t ) -  H( t )  8t (12) 

The general rule for the change of any operator X under an infinitesi- 
mal unitary transformation generated by G, 

8X= I [ X , G ]  (13) 
l 

together with the possibility of performing independent coordinate and time 
displacements leads to the corresponding statements 

�9 OF 
t-~q = IF, p] (14) 

dF O F _  1 [F, H] (15) 
dt Ot i 

which are valid for any function F(q, p, t). 
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From equation (14) applied to the function F- -  q we obtain the basic 
commutation relation 

[q,p] =i  (16) 

Equation (15) should be consistent with the equations of motion (11). It 
is i ~ .  ediate to verify that F = p and F = H substituted in the relation (15) 
reproduce indeed the equations of motion ( l lb)  and (llc). To recover ( l la)  
we need to identify - q  as the generator of changes in the momentum, 
which means that 

OF 1 
= - 7 I F ,  q]  (17)  

This relation can be viewed as consequence of the basic commutator (16) 
but can also be obtained following steps completely analogous to those 
which led to expression (14) starting from the transformation function in 
the momentum basis Ip't') and using an appropriate version of the 
Lagrangian (3). 

For the purposes of application to the calculation of the transformation 
function for systems with quadratical Hamiltonians it will be enough to 
consider equation (6) together with the explicit form of the generator (12) 
and the equations of motion (11). The basic idea is that equation (6) can be 
directly integrated for quadratical systems. This is because the linearity of 
the resulting equations of motion permits us to express q(t) and p(t),  in 
terms of the operators q(t') and q(t") whose action upon the corresponding 
eigenvectors Iq', t ') and Iq", t") is readily known. By doing this, equation 
(6) is reduced to a numerical relation which can be subsequently integrated. 
In order to illustrate this procedure in the simplest possible terms we review 
the calculation of the propagator for a harmonic oscillator defined by 

O2 2 
H = �89 + _~_q2 (18) 

is constant. The equations of motion for the where the frequency ~0 
operators are 

= p (19a) 

p = _ o22q (19b) 

which imply the follo~i~g linear second-order differential equation for q: 

+ o2~q = 0 (20) 

The general solution of equation (20) is a linear combination of the 
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functions sin tot and cos tot which contains two independent constants of 
integration which must be taken as operators in our case. Choosing such 
constants to be the operators q(t') and q(t") we finally obtain 

1 
q(t)  = sintoT(q(t ')sinto(t  - t')+ q ( t ' ) s in to ( t ' -  t)) (21) 

where T = t "  - t'. From (21) and (19a) we find 

to 
p( t )  = s in toT (q ( t " ) cos to ( t - t ' ) - q ( t ' ) cos to ( t " - t ) )  (22) 

Now we are ready to calculate the matrix element appearing in the right-hand 
side of equation (6) 

3(q", t"lq', t') 

= i(q", t " ] (p( t ' )  3 q " -  p ( t ' ) 3 q ' -  8~(p2(t , )+to2q2(t , , ) )) lq, , t , )  ' 

(23) 

which we have rewritten for our particular case taking advantage of the fact 
that H(t") = H(t') in such a way that the relevant time variable is T. All 
matrix elements can be readily calculated in terms of the basic quantity 
(q",t"lq', t ') except for the term proportional to q(t')q(t") which appears 
in the contribution (1/2)3Tp2(t ') .  In order to rewrite this term in such a 
way that both operators act on the appropriate eigenvectors we need the 
corresponding commutator which is 

[ q ( t ' ) ,  q ( t ' ) ]  = - -t-sin toT (24) 
to 

This result is obtained from the basic relation [q( t") ,  p ( t ' ) ]  = i when p(t")  
is expressed in terms of equation (22). After using (24) equation (23) reduces 
tO 

61n( q", t"lq', t') = i3[ 21nsintoT 

to q"q~ ] 
+ ~_(q,,2 + q,2)cot t o T -  s-~n~-'T] (25) 

where the changes on the right-hand side refer to 3q", 3q', and 3T. 
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Equation (25) can be integrated immediately and the constant of inte- 
gration that arises is determined by the normalization condition 
l imc ,_ , , (q" ,  t"lq', t ' )=  8 ( q " - q ' ) .  The final result is the well-known ex- 
pression 

(q",  t"lq', t ' )  = ( 21ri sin~0T/ 

Xexp -~-cot~oT q,,Z+ cos,.,T (26) 

In the above example we see that the equation (23) for the variation of 
the propagator can be integrated as shown in (25) after all the matrix 
elements are calculated. This means that some integrability conditions are 
satisfied and we are going to show how this works in the general situation. 
From (6) and the explicit form of the generators we know that 

8~ q", t"[q', t ') = i( q", t ' l  p(  t" ) 8 q " -  p(  t') 8q' 

- H ( t " ) S t " +  H( t ' )S t ' l q ' , t ' )  (27) 

which imply the following partial differential statements: 

0 
Oq" ( q''' t"lq" t') = i~ q", t" lp(  t")lq' ,  t ') (28a) 

0 
Ot , , (q" , t " lq ' , t ' )=  - i ~ q " , t " l H ( t " ) l q ' , t ' )  (28b) 

0 
, (q", t"lq', t ')  = - i (q",  t" lp( t ' ) lq ' ,  t ')  (28c) 

Oq 

0 ~q,,, t,,lq, ' t ') = i(q",  t" lH(t ' ) lq ' ,  t ') (28d) 
Ot' 

In order to be able to integrate the system (28) we have to make sure that 
the six integrability conditions which correspond to all possible crossed 
second-order partial derivatives are satisfied. This is indeed the case as can 
be verified using 

0 
-~q ( q, t I = i( q, t lp( t  ) (29a) 

O (q, t I = - i(q, t i l l ( t )  (29b) 

which are just consequences of (28), together with the equations of motion 
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(15) for the operators. We present here the verificiation of O2K/Oq " Ot"= 
c92K/Ot " Oq" as an example of these calculations. From (28a) we obtain 

OEK _ i( o_~ ( q,,, t,,l) p( t,,)lq,, t,) + i( q,,, t,,iP( t,,)lq,, t, ) 
Ot'" ~q'" 

= ~q", t " lp ( t " )H( t" ) lq ' ,  t') (30) 

after using (29b) and the equation of motion for the operator p at t = t". 
Similarly, from (28b) we can write 

02K 0 
- -  = - i (q", t"lH(t")lq' ,  t ') 
Oq" Ot" Oq" 

= (q", t " lp ( t " )H( t" ) lq ' ,  t ') (31) 

where we have used (29a) for q = q". The remaining integrability conditions 
can be verified in an analogous way and they are automatically satisfied by 
virtue of the equations of motion and the properties (29). 

Before closing this section we are going to show that the basic general 
relations between integrals of the motion and the Green's function found by 
Dodonov et al. (1975) are also a direct consequence of equation (6) and the 
explicit form of the generators (12). The integrals of the motion that 
Dodonov et al. (1975) consider are the initial position and momentum 
operators: q(t') and p(t ')  in our notation. From equation (27) we already 
derived the expression (28c) which expresses the partial derivative of the 
propagator with respect to the initial coordinate q' as a matrix element of 
the integral of motion p(t'). Now, this integral of motion can be written in 
principle as a function of the dynamical variables at any later time, in 
particular as a function of q(t") and p(t"). Writing p(t ')  = P(q(t"), p(t")) 
and recalling (29a) we obtain the relation 

1 a) 
' i Oq" (q ' '  t"lq" t') = -~q,(q", t"lq', t') (32)  

which is equation (28b) of the work of Dodonov et al. (1975). The action of 
the other constant of motion q(t ')= Q(q(t ' ) ,  p(t")) on the propagator is 
obtained after Fourier transforming an expression analogous to equation 
(28c) for the Green's function (q", t"l P', t ') expressed in a mixed basis. In 
fact, the calculation of the kinematical variations of (q", t"lp', t ') is given 
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by 

8( q", t"lp', t') = i( q", t"lp( t" ) 8q" 

- H(t") St"+ q(t') 8p'+ H(t') 8t'lp', t') (33) 

which incorporates the statement that - q ( t ' ) S p "  is the generator of 
variations in the momentum. From equation (33) we readily obtain 

- - (  q", t"lp', t') = i{ q", t"lq( t')lp', t') (34) 
Op" 

which is the analogous of expression (28c). Inserting a complete set of states 
Iq', t ' )  and recalling that ~q', t'lp', t') = (2~r)l/2exp(ip'q') we can rewrite 
equation (34) as 

f + 5  dq'eip'q'(q", t"]q', t ')q'= f+_~ dq'eip'q'~q", t'lq(t')lq', t') (35) 

Taking the Fourier transform we obtain 

0(q 0) ' i Oq" (q ' ' '  t ' l q ' ,  t ' )  = q ' ( q ' ,  t"lq' ,  t ' )  (36) 

which is equation (2.7a) of the work of Dodonov et al. (1975). As remarked 
by these authors, conditions (32) and (36) are not enough to completely 
determine the transformation function. In fact what is lacking is the 
information concerning the time evolution of the Green's function, which 
they incorporate through the SchrOdinger equation corresponding to the 
final time parameter. Again we see that this information is already con- 
tained in (27) in the form of (28b) 

a 
Ot,; ( q", t"lq', t') = - i ( q", t"lH( t" ) lq', t') 

= - i n ( q " , l -  O,,)(q",t"lq',t ") (37) 
i Oq 

3. THE PROPAGATOR OF A DAMPED-FORCED HARMONIC 
OSCILLATOR WITH TIME-DEPENDENT PARAMETERS 

3.1. Zero External Force. We take the system considered as the quan- 
tum analog of a classical damped harmonic oscillator to be described by the 
Hamiltonian 

H= �89 2 + ~2e2rq2] (38) 
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where the frequency w and the damping coefficient F are arbitrary func- 
tions of time. 

The calculation of the propagator will proceed along the same lines 
described in the last section for a simple harmonic oscillator. In the first 
place we obtain the operator equations of motion 

which lead to 

q = e -2Fp  

p = -- w2e2Fq (39) 

O q- 2~'q q- ~2q2 = 0 (40) 

for the position operator. Again, the linearity of (40) allows us to write its 
general solution as 

q( t )  = ot( t )q"  + f l ( t ) q '  (41) 

where we are using the notation q " =  q( t")  and q ' =  q(t ')  for the operators. 
The auxiliary functions a and fl are two independent solutions of the 
numerical equation 

~" + 2f'2 + ~2z = 0 (42) 

which satisfy the following boundary conditions: 

(43) 

a ( t " )  =1 ,  et(t ') = 0 

f l ( t " )  = 0 ,  f l ( t ' )  =1 

dictated by our need of explicitly introducing the operators q' and q" in 
the solution q(t).  From the first equation (39) we obtain 

(44) p(  t ) = eZr( fitq" + flq ') 

In the future we will need the commutator [q" ,q ' ]  which can be 
calculated in two alternative ways starting either from [q', p'] = i or [q ' ,  p"] 
= i and using (44). The result is 

e - 2 F "  -2F" 
: .e (45) [q",q ']  = ,  = - l - -  

[3" fit' 

Here the notation is F " = F ( t " ) ,  f l"=df l /d t l ,=, , ,  and similarly for F '  
and ti'. 
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Of course the two equivalent expressions for the commutator (45) are 
just a consequence of the equations of motion as will be shown in the 
Appendix. 

Now we are ready to calculate the change 3(q", t"lq', t') according to 
(27). Using the Hamiltonian (38) together with the expressions (41), (44), 
and (45) we obtain 

3 In(q", t"lq', t') 

=i[e2t'"a"3( q--~-)-e2r~'3( q-~)+eZr"~"3(q"q') 

3t"(e2r,,  ( q,,2(~,,2 + w,,2) + q,2/~,,2 + 2q'q"fx"[3")-i&") 
2 

~t t  [ 2F'[ tt2~ltt2 " ] + 2 ~e kq +q'2(~'2+~o'2)+2q'q"(~'~')+i[3") 
J (46) 

where q'  and q" refer here to the eigenvalues of the respective operators. 
The coordinate independent terms in (46) arise from the commutator 

(45) and provide the truly quantum contributions to the calculation. 
The next step is to integrate expression (46). From the general discus- 

sion following (26) we know that the integrability conditions are automati- 
cally satisfied in virtue of the kinematics and the equations of motion. 
Taking advantage of this, we need to pay attention only to the first three 
terms together with the two coordinate independent terms of the right-hand 
side of (46) which can be readily integrated with respect to the coordinates 
and time, respectively. In the Appendix we verify that the appropriate time 
variations of the contributions coming from the coordinate integration do 
indeed correspond to the remaining terms in (46). In the Appendix we also 
show that 

& -  = _ _ _  O In(-/~"e 2r'') 
Off" 

/ ~ , = _  0 ln(a,eZr, ) (47) 
Ot' 

6,e 2r'= _/~,,e2r " 

which permit us to integrate in general the coordinate independent terms of 
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(46). Our final result for the Green's function is then 

__ ~.e2F, ,  ]1/2 
( q", t"lq', t') = ( ~ i  ] 

i X exp ~ [ &"e 2r,,q,,2 _/~,e 2r,q,2 + 2e2r,,~,,q,,q,] (48) 

where the numerical constant has been fixed by comparison with the simple 
harmonic oscillator case. 

3.2. Addition of the External Force. In this section we complete the 
calculation of the forced, damped harmonic oscillator Green's function. The 
full Hamiltonian is now 

H= �89 2 + ~2e2rq2]-qe2rF (49) 

where the parameters ~ and F as well as the external force F are time 
dependent. The corresponding equations of motion are 

which yield 

t~ = e -2Fp  

p = - oj2eZrq + eZrF (50) 

+ 2Fq + w2q = F (51) 

for the position operator q(t). 
Let us remind ourselves that in Section 3.1 we have already found the 

propagator for the F =  0 case. The action principle allows us to take full 
advantage of this calculation by focusing our attention in the dynamical 
changes that arise in the transformation function when we vary the external 
force. In fact, we have 

8r( q", t"lq', t') = i( q", t"13F f f 'Ldt lq ' ,  t') 

= i(q", t"l f t"dtq(t)e2rt ' )3F(t) lq ", t') 
" t '  

(52) 

where the change of the Lagrangian coming from the external force arises 
only from the last term in the Hamiltonian (49) and q(t) satisfies equation 
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(51). The idea now is to reduce (52) to a numerical equation and to carry the 
integration with respect to F(t) under the condition that (q", t"lq', t')F_o 
is given by (48). Again the first step is to solve equation (51) introducing the 
operators q"  and q'  as boundary conditions. This can be done recalling 
that the complete solution of (51) is the general solution of the related 
homogeneous equation, which we know from Section 3.1, plus any particu- 
lar solution of (51). Thus we can write 

q( t )=q"a( t )+q f l ( t )+  ft:"G(t,'r)F(~')d'r (53) 

where a and fl are given by (42) and (43). 
The function G(t, ~) obeys 

) - - + 2 t  +,,2 a ( t . , ) - - - 8 ( t - . )  (54) 
dt 2 

and we must further require 

a( t" ,  , )  =G(t' ,  ,)-~O (55) 

in order that (53) have the proper boundary conditions at t" and t'. As it is 
well known, G(t, z) can be constructed from two independent solutions of 
the corresponding homogeneous equation paying attention to the boundary 
conditions at t = z, 

C ( ~ -  e ,~) - -  G ( ~ +  e,~) 

dG ,~ dG = 1 (56) 
dt ,+e dt ,_,_~ 

with e --* 0 § Condition (55) suggests the choice 

G( t , z )=Af l ( t ) a (~ )e  2r('), t > z  (57) 

G( t , r )=Aa ( t )B (~ )e  2r('), t < z  (58) 

The factor e 2r(') has been added to make sure that A is a numerical 
constant independent of ~'. Continuity at t = ~" is already built in because of 
the choices (57), (58). The discontinuity in the derivatives determine the 
constant A to be 

A= [(a(r)fl(r)-fl(~)~(~'))eEr"~] -1 (59) 

which is indeed independent of ~" according to equation (A6) of the 



1120 Urrutia and Hernimdez 

Appendix. Now we can substitute (53) in (52) to obtain 

. . . . .  = ( i i "d t e2r ( ' )F ( t )  6vln(q ,t Iq , t ' )  i 3 r [q"a(t)+q'~(t)] 

The first term on the right-hand side of (60) can be readily integrated with 
respect to F while the second term needs still some transformations. Let us 
consider the combination ~---eZrC')G(t,.r) which appears naturally in the 
double integral of (60) 

~(t,~')=Ae2r(t)fl(t)a(~')e 2r('), t>'r 

fg(t,z)=Ae2rU~a(t)fl('r)e 2r<~, t < r  (61) 

From the above equations we see that ~ is symmetrical in its arguments: 
fC(t, ~-) = ~(~,  t). Because of this we can rewrite the double integral as 

(62) 

which permits the integration with respect to F of this term. The final 
answer for the propagator is 

(q", t"lq', t') = (q", t"lq', t')F= o 

expi[i("dte2r<')F(t)(q"a(t)+q'fl(t)) 

1 i :"dzf:"dz,F( .r) fg(  , ' ) F ( ~ " ) ]  (63) q--~ "r, 

where (q", t"lq', t ')F= o is given by the expression (48) and ~(~-, ~") by (61). 

3.3. Comparison with Some Recent Calculations. In the first place we 
consider the work of Dodonov et al. (1979). Contact between their formula- 
tion and ours is established by means of the functions kl and 2~3 which they 
define in equation (5) of their paper. As can be directly verified, such 
functions satisfy the differential equation (42) with boundary conditions 

x' ,  = 1,  k' ,  = 0 

k' 3 = 0, ~'3 = - e2r' (64) 

at the point t ' =  0. Following the discussion in the Appendix we can express 
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our functions a and fl in terms of their functions X~ and X 3 in the 
following way: 

a(t)= k3(t) 

~, 
fl(t) = h t ( t  ) -  ~1. X3(t ) (65) 

Using this realization we can calculate all the expressions required to 
compare the final results. We give the list of these equivalences for the terms 
appearing in our expression (48) 

• 
Xq 

~, ,e  2F,, = ~'~e 2P' '  
(66) 

which exactly reproduce the corresponding terms in the result of Dodonov 
et al. (1979). Now we compare the F(t) dependent terms given by our 
expression (63). The contributions which are linear in q"  and q' are directly 
reproduced after the substitution (67) is made. The coordinate independent 
term related to the double integral in (63) needs a bit more of algebraic 
manipulations which lead to 

2x'; L xq, 

(67) 

The constant A is calculated according to the definition (59) giving 

A = X'~ (68) 

This completes the proof of the equivalence between our result (63) and that 
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of Dodonov et al. (1979) for the transformation function of a damped, 
forced harmonic oscillator with time-dependent parameters. 

Finally we comment on the result of Khandekar and Lawande (1979) 
and we briefly indicate how it is obtained starting from our expression (63). 
Their calculation is for the particular case F ( t )=  (1/2)rt with r constant. 
They have chosen the auxiliary functions p(t) and /~(t) to present their 
result. Such functions are the generalization of the amplitude and the phase, 
respectively, for a time-dependent oscillator and satisfy the following dif- 
ferential equations: 

1 

p2/2 =1 (69) 

with arbitrary boundary conditions. Again, to establish contact between 
their expression for the propagation function and ours we only need to 
express our functions a and fl in terms of their auxiliary functions p and #. 
This is done by the relations 

a(t) -- e '- r/2~t'-''') p(t)sin[ ~ ( t ) -  #'] 
~"sin(~"- ~') 

r (  t ) = e - t r / 2 ) t ' -  '') p ( t )sin[/.t" -- ~ ( t )] 
p ' s in (~"-  ~') 

(7o) 

It can be verified that the functions e-r'/2p(t)(sin #(t),cos#(t)) satisfy 
the linear differential equation (42) (with I" = r/2) in virtue of the equations 
(69). Besides, the constants in (70) are so adjusted that the boundary 
conditions (43) are indeed satisfied. In this way we see that a and fl defined 
in (70) are uniquely determined as solutions of a linear differential equation 
with given boundary conditions and consequently they cannot depend on 
the arbitrary boundary conditions associated to (69). It is precisely in 
equations (70) where we see that such boundary condition enter into the 
problem in a way that effectively cancels out. After some simple but tedious 
algebraic manipulations (Hernhndez, 1983) the substitution of expression 
(70) in our final result (63) for the propagator leads to the formula given by 
Khandekar and Lawande (1978) with the misprint already noticed by 
Dodonov et al. (1979) adequately corrected. We emphasize that our way of 
obtaining the result of Khandekar and Lawande clearly shows that this 
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result is in fact independent of any boundary condition related to the 
functions p and ~, which is physically very satisfactory. 

4. SUMMARY AND DISCUSSION 

In this work we show how to calculate the propagator for the quantum 
mechanical analog of a damped, forced harmonic oscillator with arbitrary 
time-dependent parameters using a direct application of Schwinger action 
principle. This particular way of exploiting the action principle is successful 
because the operator part of the equations of motion for the coordinate and 
momentum operators can be made explicit in terms of the boundary 
conditions, for the system discussed here. This fact is a general feature of 
systems described by quadratical Hamiltonians and in particular the same 
method can be applied to work out the Green's function of the general 
damped, forced oscillator in the so-called coherent states representation. 

Our final result for the propagator K( q", t"; q', t') = ( q", t"lq', t'), 
given in (63) and (48), has an explicit dependence on the initial (q') and 
final (q") coordinates. The time dependence is implicitly determined by the 
auxiliary functions a(t) and fl(t) which are independent solutions of the 
linear second-order differential equation (42) with boundary conditions 
given by (43). The explicit form of these uniquely defined auxiliary func- 
tions can be found in principle once the frequency w(t) and the damping 
coefficient F(t) are given. 

We also make contact with the approach of Dodonov et al. (1975) for 
calculating quantum mechanical propagators which is based on the action 
of some integrals of the motion, taken to be the initial coordinate q(t') and 
momentum p(t ' )  operators in this case, on the Green's function. We show 
how these general relations are obtained from the action principle and in 
particular we recover the result of Dodonov et al. (1979) for the damped, 
forced harmonic oscillator propagator using a particular representation of 
the functions a and ft. This calculation constitutes and independent verifi- 
cation of the result of Dodonov et al. (1979). In their language we would say 
that our calculation considers the initial (q(t')) and final (q(t")) position 
operator as integrals of the motion. This choice is as good as any other and 
is dictated here by the end points characterization of the propagator. 

Finally, we briefly mention how the realization of a and fl given 
in (70) allows us to recover the expression for the propagator derived by 
Khandekar and Lawande, for the particular case F = (1/2)rt, using a 
completely different approach. We also clarify a point concerning the 
apparent dependence of this expression on some unphysical boundary 
conditions. 
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A P P E N D I X  

Here we discuss some points raised in Section 3.1 where we have 
introduced the auxiliary functions a( t; t', t ' )  and fl( t; t', t ' )  which obey the 
linear differential equation 

+ 2 F ( t ) 2  + ~02(t)z = 0 (A1) 

with the following boundary conditions: 

alt=,,, =1 ,  a] ,=, ,= 0 

fll,=c, = 0, f l [ , _ , ,= l  (A2) 

We have written a and /3 as functions of / "  and t '  to emphasize the fact 
that the boundary conditions are taken at such points. 

In order to verify most of the statements made in section 3.1 we will 
need to calculate expressions like 

Ot" t=r"  Ot" t = t "  

and similarly for /3. We see that the dependence on the argument with 
respect to which the derivative is taken comes from two places: (i) the 
original dependence upon the boundary conditions and (ii) the specific 
evaluation of the variable t at either t "  or t'. In order to be able to take 
derivatives it is very convenient to make such dependences more explicit. To 
this end we introduce two new independent auxiliary functions a i (i = 1,2). 
We require them to satisfy equation (A1) with arbitrary boundary condi- 
tions chosen at any points different from t "  and t'. Such boundary 
conditions need not to be given in any detail and it is only enough that they 
properly define the functions oi. Then we can write our functions a and /3 
a s  

l ( e~%( t ) -o~oz ( t ) )  a ( t )  = -~- 

with 

a 
/3(t)= X 

(A3a) 

(A3b) 

A =  " ' -  ' " (A4) 02 0" 1 0'20" 1 

The notation is oi '= oi(t ') ,  o " =  oi( t")  and the dependence of a and fl on 
t "  and t '  is now explicit. 
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Clearly, a and fl defined in (A3) satisfy the differential equation (A1) 
because they are linear combinations of other solutions of this equation. 
Moreover, the appropriate boundary conditions (A2) are automatically 
incorporated by the definitions (A3) irrespectively of the boundary condi- 
tions used to specify the functions o~. More importantly, a and fl given in 
(A3) must be independent of the specific boundary conditions which 
determine o v This is because a solution of a linear differential equation like 
(A1) is uniquely determined by the boundary conditions which in this case 
correspond by construction to equations (A2). The functions o~ have the 
property 

d~ t ) t d~' . . . . .  , oi(t" ) (A5) 

and similarly for t = t '  because there is no implicit dependence on t"  or t'. 
To begin with, we prove the equivalence of the two alternative ways of 

calculating [q ' ,  q'] in (45). This is a direct consequence of the property 

( Ol( t )62( t ) -- o2( t )61( t ) ) e  2r(t) = C (A6) 

where C is a numerical constant. Equation (A6) can be proved by taking the 
time derivative of the left-hand side and by using the equations of motion 
(A1) for o i. Using (A3a) we calculate 

& , = l :  , . ,  C _ 
X t o l o 2 _  a2,#; ) = x e  2r' (A7) 

where we have used (A6) in the last step. Analogously, from (A3b) we 
obtain 

B, ,=  = c _ .~- e -  2F" (A8) 

The comparison between (A7) and (A8) yields the desired relation 

ti'e 2r'= - /~"e  2r" (A9) 

Now we obtain the relations (47) which allow us to perform the coordinate 
independent integrations in (46). Starting from (A7) we can write 

0 ln(&,e2r,)= 1 0 A =  1 (  _ (A10) Ot" S ~ - -~ o;'d~ ,,d~ ] 

where we have taken advantage of the explicit dependence of A on t '  given 
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by (A4). Using the property (A5) and recalling that 

~ , =  1 / , . . . . . . .  
- - - ~  a2  a 1 - -  O 1 02) (A l l )  

from (A3b), we obtain 

0 ln(&,eZr, ) = _/~,  (A12) 
Ot' 

Starting from (A8) we can show that 

0 ln(_/~,,eZr,,) = _ &,, (A13) 

in a completely analogous way. The point here is that the quantity being 
differentiated in (A12) and (A13) is the same, by virtue of (A9). 

Finally we list all the partial derivatives which are needed to show that 
the variations with respect to t"  and t" of the coordinate dependent terms in 
the propagator (48) correspond to those exhibited in (46): 

0 (&,,e2r-) = _ &~,,e2r,, = &,2e2r, 
Ot" 

(A14) 

a = _ + 

0t" 
(A15) 

c9 ( [3,e2r,) = _ e2r,( [3, 2 + ~,2) (A16) 
&" 

c9 ([3,e2r,) = _ &,/~,,elr, = e2r,,t~,, 2 (A17) 
Ot" 

-~t" /~ ,,e 2 r,, ) = &~'e 2r' (A18) 

a (/~,,e2r,,) = _ &,,/~,,eZr,, (A19) 
3t" 

All calculations are straightforward applications of the representation (A3) 
for a and fl together with the use of the equations of motion (A1) and the 
relation (A9). In particular (A18) and (A19) an just another way of writing 
(A12) and (A13), respectively. 
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